Tables

Implementing Algebraic Reasoning (AR).

strip(e)
Return type:

dict[str, Fraction]

plus(e1, e2)
Return type:

dict[str, Fraction]

plus_all(*es)
Return type:

dict[str, Fraction]

mult(e, m)
Return type:

dict[str, Fraction]

minus(e1, e2)
Return type:

dict[str, Fraction]

recon(e)

Reconcile one variable in the expression e=0, given const.

Return type:

tuple[str, dict[str, Fraction]]

replace(e, v0, e0)
Return type:

dict[str, Fraction]

report(eqdict)
class Table(verbose=False)

Bases: object

The coefficient matrix.

add_free(v)
Return type:

None

replace(v0, e0)
Return type:

None

sumcv_from_list(vc)
Return type:

dict[str, Fraction]

expr_delta(vc)

There is only constant delta between vc and the system

Return type:

bool

add_expr(vc, dep)

Add a new equality (sum cv = 0), represented by the list of tuples vc=[(v, c), ..]. Return True iff the equality can already be deduced by the internal system

Return type:

bool

why(vc)

AR traceback == MILP.

Return type:

list[Dependency]

get_equal_elements(a)

a = constant

Return type:

dict[str, Fraction]

get_equal_elements_up_to(a, b)

a = b + constant

Return type:

dict[str, Fraction]

get_equal_difference_up_to(a, b, c, d)

a - b = c - d + constant

Return type:

dict[str, Fraction]

classmethod get_length(p0, p1)
Return type:

str